The effects of tubule orientation on fatigue crack growth in dentin.

نویسندگان

  • Dwayne D Arola
  • Joseph A Rouland
چکیده

The fracture of restored teeth is a significant obstacle to lifelong oral health. Recent studies suggest that fatigue cracks originate at flaws introduced during cavity preparation and that fatigue crack growth is a principle cause of restored tooth fractures. In this study, the rate of fatigue crack growth in bovine dentin was estimated under mode I cyclic loading. Double cantilever beam (DCB) specimens were obtained from bovine molars and subjected to high cycle fatigue loading (10(5) < N < 10(6)). The fatigue crack growth rates were measured and used to estimate the crack growth exponent and coefficient according to the Paris Law. The average fatigue crack growth exponent was 4.7 +/- 0.6 for crack growth parallel to the dentin tubules, which was significantly larger than 4.3 +/- 0.5 for crack growth perpendicular to the tubules (t-test, CI > 80%). Although the crack growth rates varied considerably, there was no significant dependence on tubule orientation or tubule density. However, specific features of the fracture surfaces and tendencies for crack curving away from the tubules suggested preferential fatigue crack growth perpendicular to the dentin tubules. Results from this study are being used to guide an experimental investigation of fatigue crack growth in human dentin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition behavior in fatigue of human dentin: structure and anisotropy.

The influence of tubule orientation on the transition from fatigue to fatigue crack growth in human dentin was examined. Compact tension (CT) and rectangular beam specimens were prepared from the coronal dentin of molars with three unique tubule orientations (i.e., 0 degrees , 45 degrees and 90 degrees). The CT specimens (N=25) were used to characterize fatigue crack initiation and steady-state...

متن کامل

Contributions of aging to the fatigue crack growth resistance of human dentin.

An evaluation of the fatigue crack resistance of human dentin was conducted to identify the degree of degradation that arises with aging and the dependency on tubule orientation. Fatigue crack growth was achieved in specimens of coronal dentin through application of Mode I cyclic loading and over clinically relevant lengths (0 ≤ a ≤ 2 mm). The study considered two directions of cyclic crack gro...

متن کامل

Fatigue and Fracture of Bovine Dentin

In this paper, the fatigue and fracture properties of bovine dentin are evaluated using in vitro experimental analyses. Double cantilever beam (DCB) specimens were prepared from bovine maxillary molars and subjected to zeroto-tension cyclic loads. The fatigue crack growth rate was evaluated as a function of the dentin tubule orientation using the Paris law. Wedge-loaded DCB specimens were also ...

متن کامل

NUMERICAL INVESTIGATION OF CRACK ORIENTATION IN THE FRETTING FATIGUE OF A FLAT ROUNDED CONTACT

The growth of slant cracks by fretting fatigue of a half plane in contact with a flat rounded pad was studied. The mode I and mode II stress intensity factors for cracks of various lengths and directions were calculated using the semi-analytical method of the distribution of dislocations, and their cumulative effect on the crack growth was investigated using the strain energy density criterion....

متن کامل

Age, dehydration and fatigue crack growth in dentin.

A preliminary study of the effects from age and dehydration on fatigue crack growth in human dentin was conducted. Compact tension (CT) fatigue specimens of coronal dentin were prepared from extracted molars and subjected to high cycle fatigue (10(5)<N<10(6)) under Mode I loading. Young hydrated dentin (mean age=25+/-7 years), old hydrated dentin (mean age=55+/-14 years) and young dehydrated de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 67 1  شماره 

صفحات  -

تاریخ انتشار 2003